

Leptonic & Semileptonic Decay Results from CLEO-c

Sheldon Stone, Syracuse University

"I charm you, by my once-commended beauty"

Julius Cæsar, Act II, Scene I

Goals in Leptonic Decays

- ◆ Test theoretical calculations in strongly coupled theories in non-perturbative regime
- $f_R \& f_{Rs}/f_R$ needed to improve constraints from $\Delta m_d \& \Delta m_S / \Delta m_d$. Hard, if not impossible, to measure directly (i.e. B $\rightarrow \tau^+ \nu$ or $\mu^+\nu$), but we can determine $f_D \& f_{Ds}$ using $D \rightarrow \mu^+ \nu$ and use them to test theoretical models (i.e. Lattice QCD)

Goals in Semileptonic Decays

- lacktriangle Either take V_{cq} from other information and test theory, or use theory and measure V_{cq}
- test theory, or use theory and measure V_{cq} $\lor V_{cs}$ use $D \rightarrow K(K^*) \ell \nu$ to measure form-factor shapes to distinguish among models & test lattice QCD predictions
- \bullet V_{cd} use $D \rightarrow \pi(\rho) \ell \nu$
- \bullet V_{cd} & V_{cs} with precise unquenched lattice predictions, + V_{cb} would provide an important unitarity check
- \bullet V_{ub} use D→ρℓν to get form-factor for B→ρℓν, at same v•v point using HQET (& π ℓν)

Leptonic Decays: $D \rightarrow \ell^+ \nu$

Introduction: Pseudoscalar decay constants

c and \bar{q} can annihilate, probability is \propto to wave function overlap

Example:
$$D^{+} \begin{cases} c & V_{cd} \\ \overline{d} & V_{cd} \end{cases}$$

In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$$

Calculate, or measure if V_{Qq} is known

Expected \mathcal{B} for $P^+ \rightarrow \ell^+ \nu$ decays

We know:

$$f_{\pi} = 131.73 \pm 0.15 \text{ MeV}$$

 $f_{K} = 160.6 \pm 1.3 \text{ MeV}$

- The D_s has the largest \mathcal{B} , for $\mu^+\nu$ rate is $\sim 0.5\%$
- ◆ f_{Ds} Measured by several groups, best CLEO II, but still poorly known
- $e^+\nu$ rate is ~4 orders of magnitude smaller than $\mu^+\nu$, in the Standard Model

Kinematical Niceties

◆ Ease of *B* measurements using "double tags"

$$\mathcal{B}_{A} = \# \text{ of A/# of D's}$$

- Possible because
 - \bullet relatively large \mathcal{B} (many %),
 - multiplicities typically small $\langle n_{charged} \rangle = \sim 2.5, \langle n_{\pi^0} \rangle \sim 1.2,$
 - enough luminosity
- Reconstruct single D mesons using:

$$m_{BC}^2 = \sum E_i^2 - \sum \vec{P}_i^2 = E_{beam}^2 - \sum \vec{P}_i^2$$

◆ Then find either a leptonic or semileptonic decay of the opposite D

D⁻ Candidates (in 281 pb⁻¹)

of tags = $158,354\pm496$, includes charge-conjugate modes

Finding Leptonics & Semileptonics

◆ Ease of leptonic & semileptonic decays using double tags & Missing Mass² technique:

$$MM^{2} = (E_{D^{+}} - E_{\ell^{+}} - E_{hadrons})^{2} - (\vec{p}_{D^{+}} - \vec{p}_{\ell^{+}} - \vec{p}_{hadrons})^{2}$$
We know $E_{D^{+}} = E_{beam}$, $\vec{p}_{D^{+}} = -\vec{p}_{D^{-}}$

For leptonic decays

$$\mathbf{MM}^{2} = (E_{beam} - E_{\ell^{+}})^{2} - (-\vec{p}_{D^{-}} - \vec{p}_{\ell^{+}})^{2}$$

- ◆ Search for peak near MM²=0
- Since resolution $\sim M_{\pi^0}^2$, reject extra particles with calorimeter & tracking
- Sometimes people use $U_{miss} = E_{miss} |\vec{P}_{miss}|$, for semileptonic decays

Technique for $D^+ \rightarrow \mu^+ \nu$

- ◆ Fully reconstruct one D-, and count # of tags
- Seek events with only one additional charged track and no additional photons > 250 MeV to veto $D^+ \to \pi^+\pi^0$
- Charged track must deposit only minimum ionization in calorimeter
- Compute MM². If close to zero then almost certainly we have a $\mu^+\nu$ decay. Evaluate backgrounds
- Evaluate efficiencies
- Evaluate Systematic errors

Measurement of f_D⁺

MC Expectations from 1.7 fb⁻¹, 30 X of our data

Data: 50 events in the signal region in 281 pb⁻¹

Deriving a Value for f_D⁺

Backgrounds				
Mode	B(%)	# Events		
$\pi^+\pi^0$	0.13±0.02	1.40±0.18±0.22		
$\mathrm{K}^0\pi^+$	2.77±0.18	0.33±0.19±0.02		
$\tau^+ V (\tau \rightarrow \pi^+ V)$	$2.65*\mathcal{B}(D^+\rightarrow \mu^+\nu)$	1.08±0.15±0.16		
Other D ⁺ , D ^o		<0.4, <0.4 @ 90% c.l.		
Continuum		<1.2 @ 90% c.l.		
Total		$2.81 \pm 0.30^{+0.84}_{-0.27}$		

- There are 158,354 tags. $\varepsilon = 67.7\%^-$
- \bullet $\mathcal{B}(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$
- \bullet f_{D+} = $(222.6 \pm 16.7^{+2.3}_{-3.4})$ MeV
- $\mathcal{B}(D^+ \to e^+ \nu) < 2.4 \times 10^{-5} @ 90\% \text{ c.l.},$

Efficiencies: μ^+ detection (69.4%); extra shower (96.1%); correction for easier tag reconstruction in $\mu^+\nu$ events (1.5%)

rules out some non-Standard model theories

Systematic Errors

Source of Error	%
Finding the μ ⁺ track	0.7
Minimum ionization of μ ⁺ in EM cal	1.0
Particle identification of μ ⁺	1.0
MM ² width	1.0
Extra showers in event > 250 MeV	0.5
Background	0.6
Number of single tag D ⁺	0.6
Monte Carlo statistics	0.4
Total	2.1

Comparison to Theory

- ◆ BES measurement based on 2.67±1.74 events
- Current Lattice measurement (unquenched light flavors) is consistent
- But systematic errors on theory
 & statistical errors on data are still large

Inclusive semileptonic branching fractions

Lab momentum spectrum – no FSR correction

- ◆ Tagged sample: only "golden modes" D^0 → $K^-\pi^+$ and D^+ → $K^-\pi^+\pi^+$
- Identify e, π , K right-sign and wrong-sign samples, use unfolding matrix—true e population.
- ◆ Correction for p_e- cut

$$B(D^+ \to Xev) = (16.19 \pm 0.20 \pm 0.36)\%$$

$$\sum B(D^+ \to Xev)_{excl} = (15.1 \pm 0.50 \pm 0.5)\%$$

$$B(D^0 \to Xev) = (6.45 \pm 0.17 \pm 0.15)\%$$

$$\sum B(D^0 \to Xev)_{excl} = (6.1 \pm 0.2 \pm 0.2)\%$$

$$\frac{\Gamma(\mathbf{D}^{+} \to \mathbf{X}\mathbf{e}^{+}\nu)}{\Gamma(\mathbf{D}^{\circ} \to \mathbf{X}\mathbf{e}^{+}\nu)} = 1.01 \pm 0.03 \pm 0.03$$

Exclusive Semileptonic Decays

- Best way to determine magnitudes of CKM elements, in principle is to use semileptonic decays.
 Decay rate α|V_{OiOf}|²
- $\begin{array}{c|c} V_{QiQf} & & \ell^{-} \\ \hline Q_{i} & & \overline{\nu} \\ \hline \overline{q} & & Q_{f} \\ \hline & \overline{q} \end{array} \right\} \text{Hadron}$
- This is how $V_{us}(\lambda)$ and V_{cb} (A) have been determined
- Kinematics: $q^2 = (p_D^{\mu} p_{hadron}^{\mu})^2 = m_D^2 + m_P^2 2E_P m_D$
- ♦ Matrix element in terms of form-factors (for D→Pseudoscalar $\ell^+ \nu$

$$\langle P(P_P) | J_{\mu} | D(P_D) \rangle = f_+(q^2)(P_D + P_P)_{\mu} + f_-(q^2)(P_D - P_P)_{\mu}$$

♦ For $\ell = e$, contribution of $f_{(q^2)} \rightarrow 0$

Combining Semileptonics & Leptonics

Decay rate:

$$\frac{d\Gamma(D \to Pev)}{dq^2} = \frac{\left|V_{cq}\right|^2 P_P^3}{24\pi^3} \left|f_+(q^2)\right|^2$$

- ◆ Test of models in D decays: predictions of shapes of form factors (for D→Vector $\ell^+\nu$ there are 3 form-factors)
- ◆ Note that the ratio below depends only on QCD:

$$\frac{1}{\Gamma(D^{+} \to \ell \nu)} \frac{d\Gamma(D^{+} \to \pi e \nu)}{dq^{2}} \alpha \frac{P_{\pi}^{3} \left| f_{+}(q^{2}) \right|^{2}}{f_{D^{+}}^{2}}$$

Cabibbo Favored Semileptonic Decays

 $U = E_{miss} - |P_{miss}| (GeV)$

 $\mathcal{B} = (5.70 \pm 0.28 \pm 0.25)\%$

Raw q² →No efficiency correction, results soon

These are the dominant modes, so backgrounds are almost non-existent

Cabibbo Suppressed Semileptonic Decays

Summary of Semileptonic Branching Ratio Results

	Decay Mode	\mathcal{B} (%) (CLEO-c/(57/pb))	B (%) (PDG-04)
1.	$D^0 o \pi^- e^+ u$	$0.26 \pm 0.03 \pm 0.01$	0.36 ± 0.06
2.	$D^0 o K^- e^+ u$	$3.44 \pm 0.10 \pm 0.10$	3.58 ± 0.18
3.	$D^0 o K^{*-}(K^-\pi^0)e^+ u$	$2.16 \pm 0.24 \pm 0.11$	2.15 ± 0.35
4.	$D^0 o K^{*-}(K^0_S \pi^-) e^+ u$	$2.25 \pm 0.21 \pm 0.11$	2.15 ± 0.35
5.	$D^0 o ho^- e^+ u$	$0.19 \pm 0.04 \pm 0.02$	_
6.	$D^+ o \pi^0 e^+ u$	$0.44 \pm 0.06 \pm 0.03$	0.31 ± 0.15
7.	$D^+ o ar K^0 e^+ u$	$8.71 \pm 0.38 \pm 0.37$	6.7 ± 0.9
8.	$D^+ ightarrowar{K}^{*0}(K^-\pi^+)e^+ u$	$5.70 \pm 0.28 \pm 0.25$	5.5 ± 0.7
9.	$D^+ ightarrow ho^0 (\pi^+\pi^-) e^+ u$	$0.21 \pm 0.04 \pm 0.02$	0.25 ± 0.10
10.	$D^+ ightarrow \omega (\pi^+\pi^-\pi^0) e^+ u$	$0.17 \pm 0.06 \pm 0.01$	

 Using unquenched lattice (hep-ph/0408306) find

- \bullet V_{cs} = 0.956±0.036±0.093±0.017
- $V_{cd} = 0.213 \pm 0.008 \pm 0.020 \pm 0.008$

stat sys exp lat lat CLEC

$$V_{cs}$$
 (LEP) = 0.976±0.014
 V_{cd} (vN) = 0.224±0.012
Currently this checks
Lattice calculations

$D^+ \rightarrow K^- \pi^+ e^+ \nu$ Form Factors

- $K^-\pi^+$ mostly K^* with some s-wave (1st seen by FOCUS)
- ◆For D→V e⁺v, use 3 helicity amplitudes $H_o(q^2)$, $H_+(q^2)$, & $H_-(q^2)$
- ◆ Add h_o(q²)•H_o(q²) to account for s-wave term
- ◆Use 281 pb⁻¹

Form Factor Results

Lattice comparison: f_D and semileptonic form factors

◆ We can use a quantity independent of V_{cd} to do a CKM independent lattice check:

$$R_{\ell sl} \equiv \sqrt{rac{\Gamma(D^+ o \mu \upsilon)}{\Gamma(D^+ o \pi \ell \upsilon)}} \propto rac{f_D}{f_+^{\pi}(0)}$$
 \star I obtain: $R_{\ell sl}^{th} = 0.22 \pm 0.02$
 $R_{\ell sl}^{exp} = 0.25 \pm 0.02$

◆ Theory and data consistent at ~30% C.L.

Conclusions

- \bullet $\mathcal{B}(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$
- $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4})$ MeV, consistent with unquenched lattice QCD (hep-lat/0506030)
- More data coming including $D_S^+ \rightarrow \mu^+ \nu$
- $\mathcal{B}(D^+ \to e^+ \nu) < 2.4 \times 10^{-5} \ @ 90\% \ c.1.$
- ◆ World's best semileptonic branching ratios in most modes with only 20% of available data; will be updated soon along with form-factor measurements